Distribution Ray-Tracing

3D Programming Course

Joao Madeiras Pereira

Bibliography
K. Suffern; “Ray Tracing from the Ground Up”,
http://www.raytracegroundup.com

e Chapter 4, 5 for Anti-Aliasing Rad J Irac
* Chapter 6 — for Disc Sampling from the
* Chapter 10 — for Depth of Field GI'OI.IEd Up

11

Bibliography

Peter Shirley, Michael
Ashikhmin: “Fundamentals
of Computer Graphics”
Chapter 10 — Ray-Tracing

— Antialiasing: section 10.11.1

Fundamentals

— Soft shadows: section
10.11.2

Aliasing

o
=
O
o
b—
>
©
a4
Q@
o
=
)
=
—
=
Q@
o
&
N

antialiasing

o

o

raytraced images are too "clean”

e soft shadows come from area light

o raytracing only supports point ligts

[Jason Waltman / jasonwaltman.com]

Raytraced images are “too clean”

e blurry reflections come from rough materials

o raytracing only supports perfectly sharp mirror

Raytraced images are “too clean”

e depth of field come from lens system

o raytracing only support pinhole camera

*=dist in focus *=dist in focus

[Jason Waltman / jasonwaltman.com]

Raytraced images are “too clean”

e motion blur come from shutter speed

o raytracing only support infinitely fast shutter speed

[Jason Waltman / jasonwaltman.com]

Whitted
Raytraced
INEREES

Distribution
Raytraced
Images -
antialiasing
and soft
shadows

Distribution Ray —Tracing (DRT)

use many rays to compute average values over
pixel areas, time, area lights, reflected
directions, ...

Distribution RT

Distributed Ray Tracing, aka Distribution Ray Tracing or
Stochastic Ray Tracing, is a refinement of ray tracing that
allows for the rendering of "soft" phenomena

Averaging multiple rays distributed over an interval

Soft shadows can be rendered by distributing shadow rays
over the light source area.

Spatial anti-aliasing can be rendered by distributing rays
over a pixel

Distribute rays across the eye to simulate depth of field
effect

Blurry reflections and transmissions can be rendered by
distributing reflection and transmission rays over a solid
angle about the mirror reflection or transmission direction.

Distribute rays in time to get temporal antialiasing (motion
blur)

Antialiasing with Supersampling
e attempts to reduce the errors by shooting
more than one primary ray into each pixel and

averaging the results to determine the pixel's
apparent color.

lhe resulting color for this pixel will be
two-thirds blue and one-third green

Regular Sampling

* Fire more than one ray for each pixel (e.g., a
4x4 grid of rays

* Average the results (perhaps using a filter)

Antialiasing with Regular Sampling
[Shirley]

* Replace the code for cach pixel (i, §) do
gy = ray-color(€ + 0.5, § + 0.5]

d=—d,2,+wf 02 Ll p(1+05 Ll
ResX 2 ResY 2

* With code that samples on a regular nx n
grid:

for cach pixel {4, 7] do
=1
for p=0ton — 1 do
forg=0ton— 1do
¢ = ¢+ may-color(i + (p+0.5) /0 5§+ (g +0.5]/n)

.
Ly — L 38

Regular Sampling
Issues

e —
R —
B —
B —
R ———
e —
B S—
B —
B —
-
| —
T ————
R —
S ——
B SS—

|

)

L

|

)

{

Leads to artefacts like moiré
patterns:

(
))/((((

|

Regular sampling takes 16 times
longer to render

e Solutions:

— Adaptive supersampling

Adaptive supersampling

* |f the color of a pixel differs from its neighbors (to the
left or below) by at least the set threshold value then
the pixel is super-sampled by shooting a given, fixed
number of additional rays. A good threshold value is
0.3

 Ifrl, g1, blandr2, g2, b2 are the rgb components of
two pixels then the difference between pixels is
computed by:

diff = abs(r1-r2) + abs(gl-g2) + abs(b1-b2)

* |f the anti-aliasing threshold is 0.0 then every pixel is
super-sampled. If the threshold is 3.0 then no anti-
aliasing is done

Adaptive
Supersampling

- Monte-Carlo
Sampling

It’s a recursive technique

It starts by tracing four rays at the
corners of each pixel.

If the colors are similar (check the
threshold) then just use their average

Otherwise recursively subdivide each cell
of the grid into four sub-pixels: fire
additional 5 rays — at the center and at
mid of the 4 edges

Sub-pixels are separately traced and
tested for further subdivision

Keep going until each 2x2 grid is close to
uniform or limit is reached

Filter the result

The advantage of this method is the
reduced number of rays that have to be
traced.

Samples that are common among
adjacent pixels and sub-pixels are stored
and reused to avoid re-tracing of rays.

Adaptive Supersampling - Monte-Carlo Sampling

. Raios Primarios

First iteration —512 x 512 viewport implies 513x513
primary rays

Antialiasing with Stochastic (Random) Sampling

[Shirley]

Adaptive Supersampling still divides pixels into
regular patterns of rays, and suffers from aliasing
that can occur from regular pixel subdivision —
Moiré patterns

It sends a fixed number of rays into a pixel, but

makes sure they are randomly distributed (but more
or less evenly cover the area)

i
')
W
. []
i
C
. »
* -
- i

igure 10.28. Sixléen
aim samples for & sng
%l

Stochastic (Random) Sampling [Shirley]

for cach pixel (¢, §) do
* Code: e=10
forp = 1ton” do
¢ = ¢+ ray-color(s +£,9+ &)
s

¢ is a call that returns a uniform random number in the range [0,
1] — see rand_float() and set_rand_seed(seed) in maths.h

*One interesting side effect of the stochastic sampling patterns is
that they actually injects noise into the solution (slightly grainier
images). This noise tends to be less objectionable than aliasing

artifacts.

Stochastic (Random) Sampling issue: Noise

Mitigating noise

Jittering ishirey

 With the same number of samples, we can

reduce the noise by improving the samples
spatial distribution.

e Solution: Hybrid strategy that randomly

perturbs a regular grid — Jittering or Stratified
Sampling

Jittering [Shirley]

Figure 10.29, Shopen
strabhed (pGered) samplas
for & singla pxsl 5hown with
ang without the bns highs
lighted. Thare & exacty
QNG FANRGGm Sampls SakEn
withim aach Bin

for cach pixel (£, §) do
=1
forp=01t0n — 1do
forg=0wn — | do
¢=¢+ray-color(i +{p+E)m, 7+ (g+£)/n)

=
1
|:'-_| = -!-:I' ;'I

Antialiasing

Yolis

Shadows:
distributing
over light
source

dreas

Soft Shadows

Point light sources produce sharp shadow edges

— the point is either shadowed or not

— only one ray is required
With an extended light source the surface point may
be partially visible to it

— only part of the light from the sources reaches the point

— the shadow edges are softer
— the transition region is the penumbra

Accomplish this by

— firing shadow rays to multiple points on
the light source

— weighting them by the brightness

— the resulting shading depends on
the fraction of the obstructed
shadow rays

light

,.Jr' ."I umbra p".

ntensity on ground plane

opaque
object

surface

Soft Shadows [Shirley]

With antialiasing: represent
/“} the area light as an infinite

number of point lights and
choose one at random for each
primary ray

Without antialiasing:
represent the area light as a
distributed set of N point
lights, each with one Nth of
the intensity of the base
light

Figure 10.32. The gecom-
ptry of a paraldogram light
spacihad by a4 corfér point
and ted edps veclons

r=c¢+£1a+ £:b,
where £; and £2 are uniform random numbers in the range 0, 1),

4 samples per pixel (spp)

Soft Shadows: Assignment 1

Pixel and Light sampling issues

Instead of generating a pure random shadow ray for each primary ray
through the pixel sample, we can reduce the noise in the shadow area, by
improving the samples spatial distribution, so applying jittering is also a

good strategy.

camerei/.
area light
“o A
: _’,-’ //,' /
® l\ /‘//// ‘.'////"/
/'

\ 2 P nd A \\
7~ P W< $

surface

re 5.2. Shading a surface with an area light and four samples per pixel.

Pixel and Light sampling issues

 Jittering samples in the light must be done
carefully

— Number of pixel samples and light samples should
be the same

— We would not want to always have the ray in the
upper left-hand corner of the pixel generate a

shadow ray to the upper left-hand corner of the
light

e Shuffle the samples of light array in order to
avoid a correlation with the pixel array

Depth of Field

B Distributing rays over a finite aperture gives:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Virtual and Real Camera gsusem]

e the virtual camera (a) models the pinhole camera; the eye
corresponds to the pinhole of (b)

* In(a) the view plane is between the eye and the objects

* the pinholein (b) is in the between the objects and the film
plane

 The “lens” is infinitely small
 Real cameras have finite-aperture lens with focal distance

@

o] o
e L~
eye o/ﬁ ----- e Y — ol e
Gi’f/ e &
\ *"g\ (] WAL
i B Q]< \C:')

film plane pinhole

A

(a) (b)

Figure 9.2. (a) Computer perspective viewing; (b) real pinhole camera, where the image on
the film plane is inverted.

Depth of Field — Thin Lens suftem

< p
---------------------- e T iceeooo- oL - - lens axis
pl
image plane focal plane
circle of confusion
| / < — p
Q' ¢ . ///
.‘\‘\ \‘\\
2 e ;
. ~ S
~ W 5. .
D e Gt T T PR LT PR PP TR T TP ---lens axis
‘\\ - — - \\»\
W e — ‘\,‘_\
p' - N
-« ~q
image plane focal plane

Depth of field (DOF) is the range of distances parallel to the lens axis in which the

scene is in focus
In RT, the image can appear in focus over the range of distances where the circle of

confusion is smaller than a pixel

Thin-Lens Simulation sutfem)

\\
\\
\ //‘.'/
\\ look at
\ /
\> .
o
[
\
i
e
\\
Evn | focal plane
lens view plane

Figure 10.3. A thin-lens camera consists of a disk for the lens, a view plane (as usual), and
a focal plane, all perpendicular to the view direction.

The simulation requires a large number of rays/pixel whose origins are distributed over
the surface of the lens

Depth of Field suftern)

- 2
.] 7 I l
sample point primary ray ®P) o
ofl lens g o ::;,;;:57__ P
center sample point Y
ey T on a pixel -
- a pixel
z, <& @ lookat /
e \center of 4+
p' o lens lens
_ _ view plane focal plane
image plane view plane focal plane

* To simulate DOF:

— Compute the point p where the center ray hits the focal plane;

— Use p and the sample point on the lens to compute the
direction of the primary ray so that this ray also goes through p;

— Ray-trace the primary ray into the scene; the center ray does
not contribute to the pixel color

* But p, although in perfect focus, will not be antialiased;
what to do?

DOF + Antialiasing isufrem

lens

[NN [/
//&\Uj

=~

s

ot
I~
I~
I~

>
By
Bl

\

/17

look at

focal plane

view plane

Figure 10.6. Four center rays go through different sample points on a pixel.

/
/

Y

v B
S~

’\
L g

S~

w u\

lens

[
’ » ./"'./
| — look at
)
\\
\\
\K focal plane
view plane

Figure 10.7. Four primary rays that start at sample points on the lens and hit the focal plane
at the same points that the center rays in Figure 10.6 hit it.

Primary Rays Calc in WC isuffern)

Ray PrimaryRay(const Vector& lens_sample, const Vector& pixel_sample) //in camera.h

We don’t have to trace the center rays:

primary ray

center
ray

= (] e—

S
.

Direction of primary ray:

d =normalize(p — L,)

view plane

f =

in camera coordinates:

=(p,, 1., =f),
/_I.P“ P Uui} ﬂ
- Ps = [.”5::! F’s}-r —d),
e Y
Izix | Is= (I, I5,, 0) = sample_unit_disk() * aperture’
.
Px = Psx (fd)
" Py = Psy(fIA).
focal plane laperture = Camera ->GetAperture(),

= normalize((p, — l;,)Xe + (p, — 1;,)¥e —fZc) //in WC

Origin of primary ray:

eye_offset =eye + I, *Xe + 1, * Yo, //inWC

* Very Small Aperture

Depth of Field

 Large Aperture

Depth of Field

 Large Aperture

Depth of Field

* Very Large Aperture

Depth of Field

Assignment 1
DOF

Fuzzy Reflection

e blurry reflections come from rough materials

o raytracing only supports perfectly sharp mirror

Fuzzy Reflection

p

Sphere center=p +R
S =p + R + roughness_param * rand_in_unit_sphere()
ray.direction =S — p = normalize(R + roughness_param * rand_in_unit_sphere())

return(Dot(ray.direction, normal) > 0)

Fuzzy reflection (rougness = 0.3)

Fuzzy reflection (rougness = 0.3)

roughness =0.0 64 spp

roughness =0.3 64 spp

DRT to simulate motion blur

B Distributing rays over time gives:

University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

DRT to simulate motion blur

class ray {
public:
ray() {}
ray(const point3& origin, const vec3& direction, double time = 8.8)
: orig(origin), dir(direction), tm{time)
{}

point3 origin{) const { return orig; }
vecd direction() const { return dir; }
double time() const { return tm; }

point3 at(double t) const {
return orig + t*dir;

}

public:
point3 orig;
vecd dir;
double im;

DRT to simulate motion blur

class camera {
public:
// new: add t0 and tl
camera(vec3 lookfrom, vec3 lookat, vec3 vup, float vfov, float aspect, float aperture, float focus_dist,
float t0, float tl) { // vfov is top to bottom in degrees

timel0 = t0;
timel = tl;
lens_radius = aperture / 2;
float theta = vfov*M PI/180;
float half height = tan(theta/2);
float half width = aspect * half height;
origin = lookfrom;
w = unit vector(lookfrom - lookat);
u = unit vector(cross(vup, w));
v cross(w, u);
lower_ left corner = origin =~ half width*focus_dist*u -half height*focus_dist*v - focus_dist*w;
horizontal = 2*half width*focus dist*u;
vertical = 2*half height*focus dist*v;

}

// new: add time to construct ray
ray get ray(float s, float t) {
vec3 rd = lens_radius*random in unit_disk();
vec3 offset = u * rd.x() + v * rd.y();
float time = time0 + drand48()*(timel-time0);
return ray(origin + offset, lower left corner + s*horizontal + t*vertical - origin - offset, time);

}

vec3 origin;

vec3 lower left corner;

vec3 horizontal;

vec3 vertical;

vec3 u, v, w;

float time0, timel; // new variables for shutter open/close times
float lens_radius;

DRT to simulate motion blur

class moving sphere: public hitable ({
public:
moving_ sphere() {}

moving sphere(vec3 cen0, vec3 cenl, float t0, float tl1, float r, material *m) :
centerO(cen0), centerl(cenl), timeO(t0),timel(tl), radius(r), mat ptr(m) {};

virtual bool hit(const ray& r, float tmin, float tmax, hit record& rec) const;
vec3 center(float time) const;

vec3 center0, centerl;
float timel, timel;
float radius;

material *mat ptr;

}i

vec3 moving sphere::center(float time) const({
return center(0 + ((time - time0) / (timel - time0l))*(centerl - center0);

}

Distribution Ray Tracing

distribute rays throughout a pixel to get spatial antialiasing
distribute rays in time to get temporal antialiasing (motion blur)
distribute rays in reflected ray direction to simulate gloss

distribute rays across area light source to simulate penumbras
(soft shadows)

distribute rays across eye to simulate depth of field

distribute rays across hemisphere to simulate diffuse
interreflection

also called: “distributed ray tracing” or stochastic ray tracing

aliasing is replaced by less visually annoying noise.
powerful idea! (but requires significantly more computation)

