
Distribution Ray-Tracing

3D Programming Course
João Madeiras Pereira

Bibliography
K. Suffern; “Ray Tracing from the Ground Up”,

http://www.raytracegroundup.com

• Chapter 4, 5 for Anti-Aliasing
• Chapter 6 – for Disc Sampling
• Chapter 10 – for Depth of Field

Bibliography

Peter Shirley, Michael
Ashikhmin: “Fundamentals
of Computer Graphics”

Chapter 10 – Ray-Tracing

– Antialiasing: section 10.11.1

– Soft shadows: section
10.11.2

Raytraced images are “too clean”

Raytraced images are “too clean”

Raytraced images are “too clean”

Whitted
Raytraced
images

Distribution
Raytraced
images -
antialiasing
and soft
shadows

Distribution Ray –Tracing (DRT)

use many rays to compute average values over
pixel areas, time, area lights, reflected
directions, ...

Distribution RT
• Distributed Ray Tracing, aka Distribution Ray Tracing or

Stochastic Ray Tracing, is a refinement of ray tracing that
allows for the rendering of "soft" phenomena

• Averaging multiple rays distributed over an interval
• Soft shadows can be rendered by distributing shadow rays

over the light source area.
• Spatial anti-aliasing can be rendered by distributing rays

over a pixel
• Distribute rays across the eye to simulate depth of field

effect
• Blurry reflections and transmissions can be rendered by

distributing reflection and transmission rays over a solid
angle about the mirror reflection or transmission direction.

• Distribute rays in time to get temporal antialiasing (motion
blur)

Antialiasing with Supersampling
• attempts to reduce the errors by shooting

more than one primary ray into each pixel and
averaging the results to determine the pixel's
apparent color.

Regular Sampling

• Fire more than one ray for each pixel (e.g., a
4x4 grid of rays

• Average the results (perhaps using a filter)

Antialiasing with Regular Sampling
[Shirley]

• Replace the code

• With code that samples on a regular n x n
grid:

eeef
sY

j
h

sX

i
wd yxzd ˆ

2

1

Re

5.0
ˆ

2

1

Re

5.0
ˆ

−

+
+

−

+
+−=

Regular Sampling
issues

• Leads to artefacts like moiré
patterns:

• Regular sampling takes 16 times
longer to render

• Solutions:

– Adaptive supersampling

Adaptive supersampling

• If the color of a pixel differs from its neighbors (to the
left or below) by at least the set threshold value then
the pixel is super-sampled by shooting a given, fixed
number of additional rays. A good threshold value is
0.3

• If r1, g1, b1 and r2, g2, b2 are the rgb components of
two pixels then the difference between pixels is
computed by:
diff = abs(r1-r2) + abs(g1-g2) + abs(b1-b2)

• If the anti-aliasing threshold is 0.0 then every pixel is
super-sampled. If the threshold is 3.0 then no anti-
aliasing is done

Adaptive
Supersampling
- Monte-Carlo

Sampling

• It’s a recursive technique

• It starts by tracing four rays at the
corners of each pixel.

• If the colors are similar (check the
threshold) then just use their average

• Otherwise recursively subdivide each cell
of the grid into four sub-pixels: fire
additional 5 rays – at the center and at
mid of the 4 edges

• Sub-pixels are separately traced and
tested for further subdivision

• Keep going until each 2x2 grid is close to
uniform or limit is reached

• Filter the result

• The advantage of this method is the
reduced number of rays that have to be
traced.

• Samples that are common among
adjacent pixels and sub-pixels are stored
and reused to avoid re-tracing of rays.

Adaptive Supersampling - Monte-Carlo Sampling

First iteration – 512 x 512 viewport implies 513x513
primary rays

Antialiasing with Stochastic (Random) Sampling
[Shirley]

• Adaptive Supersampling still divides pixels into
regular patterns of rays, and suffers from aliasing
that can occur from regular pixel subdivision –
Moiré patterns

• It sends a fixed number of rays into a pixel, but
makes sure they are randomly distributed (but more
or less evenly cover the area)

Stochastic (Random) Sampling [Shirley]

• Code:

•ξ is a call that returns a uniform random number in the range [0,
1] – see rand_float() and set_rand_seed(seed) in maths.h
•One interesting side effect of the stochastic sampling patterns is
that they actually injects noise into the solution (slightly grainier
images). This noise tends to be less objectionable than aliasing
artifacts.

Stochastic (Random) Sampling issue: Noise

Mitigating noise

Jittering [Shirley]

• With the same number of samples, we can
reduce the noise by improving the samples
spatial distribution.

• Solution: Hybrid strategy that randomly
perturbs a regular grid – Jittering or Stratified
Sampling

Jittering [Shirley]

Antialiasing

Soft
Shadows:

distributing
over light

source
areas

Soft Shadows [Shirley]

Without antialiasing:
represent the area light as a
distributed set of N point
lights, each with one Nth of
the intensity of the base
light

With antialiasing: represent
the area light as an infinite
number of point lights and
choose one at random for each
primary ray

4 samples per pixel (spp) 64 spp

Soft Shadows: Assignment 1

Pixel and Light sampling issues
Instead of generating a pure random shadow ray for each primary ray
through the pixel sample, we can reduce the noise in the shadow area, by
improving the samples spatial distribution, so applying jittering is also a
good strategy.

Pixel and Light sampling issues

• Jittering samples in the light must be done
carefully
– Number of pixel samples and light samples should

be the same

– We would not want to always have the ray in the
upper left-hand corner of the pixel generate a
shadow ray to the upper left-hand corner of the
light

• Shuffle the samples of light array in order to
avoid a correlation with the pixel array

Depth of Field

Virtual and Real Camera [Suffern]

• the virtual camera (a) models the pinhole camera; the eye
corresponds to the pinhole of (b)

• In(a) the view plane is between the eye and the objects

• the pinhole in (b) is in the between the objects and the film
plane

• The “lens” is infinitely small

• Real cameras have finite-aperture lens with focal distance

Depth of Field – Thin Lens [Suffern]

• Depth of field (DOF) is the range of distances parallel to the lens axis in which the
scene is in focus

• In RT, the image can appear in focus over the range of distances where the circle of
confusion is smaller than a pixel

Thin-Lens Simulation [Suffern]

The simulation requires a large number of rays/pixel whose origins are distributed over
the surface of the lens

Depth of Field [Suffern]

• To simulate DOF:
– Compute the point p where the center ray hits the focal plane;
– Use p and the sample point on the lens to compute the

direction of the primary ray so that this ray also goes through p;
– Ray-trace the primary ray into the scene; the center ray does

not contribute to the pixel color

• But p, although in perfect focus, will not be antialiased;
what to do?

DOF + Antialiasing [Suffern]

Primary Rays Calc in WC [Suffern]

We don’t have to trace the center rays:

Direction of primary ray:

ze

xe

𝐝 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑝 − 𝑙𝑠
= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑥 − 𝑙𝑠𝑥 ො𝐱𝑒 + 𝑝𝑦 − 𝑙𝑠𝑦 ො𝐲𝑒 −𝑓ො𝐳𝑒) //in WC

Origin of primary ray:

eye_offset = eye + 𝑙𝑠𝑥* ෝ𝒙𝒆 + 𝑙𝑠𝑦 * ෝ𝒚𝒆; //in WC

Ray PrimaryRay(const Vector& lens_sample, const Vector& pixel_sample) //in camera.h

ls = (lsx , lsy , 0) = sample_unit_disk() * aperture1

in camera coordinates:

1aperture = Camera ->GetAperture(),

Depth of Field

Depth of Field

Depth of Field

Depth of Field

Assignment 1
DOF

Fuzzy Reflection

Fuzzy Reflection

R

p

S

Sphere center = p + R

S = p + R + roughness_param * rand_in_unit_sphere()

ray.direction = S – p = normalize(R + roughness_param * rand_in_unit_sphere())

return(Dot(ray.direction, normal) > 0)

Fuzzy reflection (rougness = 0.3)

Fuzzy reflection (rougness = 0.3)

roughness = 0.0 64 spp

roughness = 0.3 64 spp

DRT to simulate motion blur

DRT to simulate motion blur

DRT to simulate motion blur

DRT to simulate motion blur

